Extensions 1→N→G→Q→1 with N=C2 and Q=C23.C23

Direct product G=N×Q with N=C2 and Q=C23.C23
dρLabelID
C2×C23.C2332C2xC2^3.C2^3128,1614


Non-split extensions G=N.Q with N=C2 and Q=C23.C23
extensionφ:Q→Aut NdρLabelID
C2.1(C23.C23) = C42.371D4central extension (φ=1)32C2.1(C2^3.C2^3)128,190
C2.2(C23.C23) = C42.393D4central extension (φ=1)32C2.2(C2^3.C2^3)128,192
C2.3(C23.C23) = C42.394D4central extension (φ=1)64C2.3(C2^3.C2^3)128,193
C2.4(C23.C23) = C24.162C23central extension (φ=1)32C2.4(C2^3.C2^3)128,472
C2.5(C23.C23) = C4×C23⋊C4central extension (φ=1)32C2.5(C2^3.C2^3)128,486
C2.6(C23.C23) = C42.42D4central stem extension (φ=1)32C2.6(C2^3.C2^3)128,196
C2.7(C23.C23) = C42.43D4central stem extension (φ=1)32C2.7(C2^3.C2^3)128,198
C2.8(C23.C23) = C42.44D4central stem extension (φ=1)64C2.8(C2^3.C2^3)128,199
C2.9(C23.C23) = C42.395D4central stem extension (φ=1)32C2.9(C2^3.C2^3)128,201
C2.10(C23.C23) = C42.396D4central stem extension (φ=1)64C2.10(C2^3.C2^3)128,202
C2.11(C23.C23) = C42.372D4central stem extension (φ=1)32C2.11(C2^3.C2^3)128,205
C2.12(C23.C23) = C42.375D4central stem extension (φ=1)32C2.12(C2^3.C2^3)128,232
C2.13(C23.C23) = C42.403D4central stem extension (φ=1)32C2.13(C2^3.C2^3)128,234
C2.14(C23.C23) = C42.404D4central stem extension (φ=1)32C2.14(C2^3.C2^3)128,235
C2.15(C23.C23) = C42.55D4central stem extension (φ=1)32C2.15(C2^3.C2^3)128,237
C2.16(C23.C23) = C42.56D4central stem extension (φ=1)32C2.16(C2^3.C2^3)128,238
C2.17(C23.C23) = C42.57D4central stem extension (φ=1)32C2.17(C2^3.C2^3)128,241
C2.18(C23.C23) = C42.58D4central stem extension (φ=1)32C2.18(C2^3.C2^3)128,244
C2.19(C23.C23) = C42.59D4central stem extension (φ=1)32C2.19(C2^3.C2^3)128,246
C2.20(C23.C23) = C42.60D4central stem extension (φ=1)32C2.20(C2^3.C2^3)128,247
C2.21(C23.C23) = C42.61D4central stem extension (φ=1)32C2.21(C2^3.C2^3)128,249
C2.22(C23.C23) = C42.62D4central stem extension (φ=1)32C2.22(C2^3.C2^3)128,250
C2.23(C23.C23) = C42.63D4central stem extension (φ=1)32C2.23(C2^3.C2^3)128,253
C2.24(C23.C23) = C24.165C23central stem extension (φ=1)32C2.24(C2^3.C2^3)128,514
C2.25(C23.C23) = C24.167C23central stem extension (φ=1)32C2.25(C2^3.C2^3)128,531
C2.26(C23.C23) = C24.169C23central stem extension (φ=1)32C2.26(C2^3.C2^3)128,552
C2.27(C23.C23) = C24.174C23central stem extension (φ=1)32C2.27(C2^3.C2^3)128,631
C2.28(C23.C23) = C24.175C23central stem extension (φ=1)32C2.28(C2^3.C2^3)128,696
C2.29(C23.C23) = C24.176C23central stem extension (φ=1)32C2.29(C2^3.C2^3)128,728

׿
×
𝔽